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Abstract: Recent data on the distributions of cilia and mucocytes on the bivalve gill abfrontal 
surface are analysed with respect to evolutionary relationships of the principal autobranch gill 
types. From the primitive function as a mucociliary cleaning surface in the protobranchs, two 
evolutionary trajectories are evident: (1) progressive reduction of both cilia and mucocytes with 
resultant loss of surface function, seen in the homorhabdic filibranchs studied; (2) reduction of 
cilia but retention or increase in acid mucopolysaccharide-secreting (AMPS) mucocyte density in 
the eulamellibranchs, corresponding to the assumption of a new function, probably in the 
reduction of frictional resistance to flow in the water canals. Heterorhabdic gill abfrontal surfaces 
present a mixture of these characteristics: reduction of cilia and mucocytes on the ordinary 
filaments, and retention of both on the principal filaments. The retention of AMPS mucocytes on 
the abfrontal surface of the pseudolamellibranchs may be related to the degree of interlamellar 
fusion, reducing frictional resistance to water flow as in the eulamellibranchs. The gill abfrontal 
surface thus constitutes an excellent candidate for the study of the different evolutionary options 
and trajectories of a redundant feature. 

Compared to the intensive anatomical  and 
functional studies of the frontal surface of bivalve 
gills [see Winter (1978), JCrgensen (1990) and 
Beninger  & St-Jean (1997) for reviews and 
references], the abfrontal surface has been virtually 
ignored, with only very cursory descriptions of 
surface and histological characteristics. This lack of 
interest is perhaps understandable from a functional 
point of view, since the immense majority of 
bivalves are suspension feeders and the frontal 
surface of the gill plays a key role in particle 
processing (Atkins 1938; Nelson 1960; Beninger & 
St-Jean 1997; Beninger et al. 1993, 1997a; Nielsen 
et al. 1993; Ri isg~d et al. 1996; Silverman et al. 
1996; Ward et al. 1998). In contrast, the abfrontal 
surface is not involved in any stage of particle 
processing and, indeed, if any particles were 
available to it, there would be no route to the 
digestive tract. However, this surface presents a 
very interesting peculiarity in that its presumed 
original protobranch cleaning function has been 
obviated by the separation of the pallial cavity into 
more or less modified infra- and suprabranchial 
chambers (Yonge 1941; Morton 1996; Waller 
1998), such that the risk of fouling is virtually 

absent in contemporary autobranchs (sensu 
Autobranchia, non-protobranch bivalves; Morton 
1996; Salvini-Plawen & Steiner 1996). It therefore 
constitutes an excellent opportunity to study the 
evolution of a redundant feature throughout the 
Bivalvia. Two main evolutionary trajectories are 
available to such a structure: (1) retention or 
augmentation of the original functional character- 
istics, in response to either neutral or positive 
selection for a new function to which the original 
features were pre-adapted; (2) reduction or loss of 
the original functional characteristics in response to 
negative selection, i.e. the metabolic cost of 
maintaining these features. 

The chief  functional characteristics of the 
primitive bivalve gill abfrontal surface are cilia and 
mucocytes, present in the protobranch condition 
and variously reported in the autobranchs 
(Ridewood 1903; Atkins 1936, 1938; Nelson 1960; 
Jones et al. 1990; Richard et al. 1991; Beninger et 
al. 1997a; Dufour & Beninger in press).  The types 
and abundances of these two characteristics may 
thus serve as markers to trace the evolutionary 
trajectories of the abfrontal surfaces within the 
major bivalve taxa. Here such a study is presented, 
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based largely on a recent detailed account of cilia 
and mucocyte densities on the abfrontal surfaces of 
eight bivalve species representing the four principal 
autobranch gill types, including primitive and 
advanced conditions (Dufour & Beninger in press). 
The elucidation of such heretofore poorly studied 
characteristics may also reinforce the significance 
of gill structure in taxonomy and phylogeny 
(Salvini-Plawen 1980; Salvini-Plawen & Steiner 
1996). 

Database 

To date, reports on the distribution of bivalve 
abfrontal cilia and mucocytes have been confined 
to indications of their presence or absence, 
sometimes with subjective comments on their 
abundance (e.g. Atkins 1938; Nelson 1960; Eble & 
Scro 1996), and no systematic investigation of the 
entire abfrontal surface appears to have been 
carried out for any species. The data for the present 
work is therefore drawn from a systematic 
investigation of the types and distribution of cilia 
and mucocytes of the abfrontal surfaces of eight 
bivalve species, representing seven families and the 
four major autobranch gill types (Dufour & 
Beninger in press). Briefly, this study showed the 
following. (1) In the homorhabdic filibranchs, 
varying degrees of reduction of the abfrontal cilia 
and mucocytes were observed; Mytilus edulis 
presented the greatest density of cilia and 
mucocytes, and the most mucocyte secretion types; 
Modiolus modiolus presented a much smaller 
density of both cilia and mucocytes, and fewer 
mucocyte secretion types; Arca zebra displayed the 
greatest degree of reduction, with few cilia and low 
densities of mucocytes, and only one mucocyte 
secretion type. (2) In the homorhabdic eulamelli- 
branchs, reduction of cilia was extreme and only 
one mucocyte secretion type was present- acid 
mucopolysaccharides (AMPS). However, the 
density of mucocytes was high, with an extraordi- 
narily high density of Spisula solidissima. (3) In the 
heterorhabdic species, ciliation of the abfrontal 
surface of the ordinary filaments (OF) was greatly 
reduced, while that of the principal filaments (PF) 
was dense. The density of mucocytes was also 
greater on PF cf. OF, with a mixture of 
mucopolysaccharide types in the heterorhabdic 
filibranch Placopecten magellanicus and AMPS 
only in the pseudolamellibranch Crassostrea 
virginica. The observations of cilia and mucocyte 
densities may be summarized graphically, using 
scaleless axes in which each quadrant embodies a 
different functional outcome (Fig. 1). The relative 
positions of the gill types studied may thus be 
interpreted from a functional and evolutionary 
standpoint. 

Discussion 

The basic premise of this work is that functionally 
coupled organs key to the success of an organism 
respond more strongly to their respective selective 
pressures than other organs whose functioning is 
not significantly affected by those pressures. In the 
case of the Bivalvia, the ready availability of 
planktonic particles doubtless conferred a signifi- 
cant advantage to those individuals which 
presented gill modifications from the primitive 
protobranch type, enabling increasingly efficient 
capture and processing. Hence, the bivalve gill 
underwent rapid evolution within each of the major 
taxa, while other organs, such as the heart, retained 
their form, as witnessed in the uniformity of this 
organ throughout the class (Beninger & Le Pennec 
1991; Eble 1996). It is thus possible to use the data 
on gill abfrontal ciliation to trace the evolutionary 
changes of this surface in the gill itself, and to relate 
these to changes in the overall form and function of 
the gill, independent of the larger phylogenetic 
trajectories. 

There is little doubt that the filibranch condition 
evolved from the protobranch gill type (Yonge 
1941; Morton 1979; Salvini-Plawen 1980; Morton 
1996; Waller 1998). The gill of the family 
Nuculidae, which best represents the primitive 
protobranch condition (Yonge 1941), is char- 
acterized by a uniform, dense abfrontal ciliation 
which participates in particle transport, principally 
in cleaning (Orton 1912). Although no study of the 
mucocyte distribution on the nuculid gill has been 
made, particle transport, and especially cleaning a 
ciliated surface, involves mucociliary transport (see 
Beninger et al. 1997b), and thus a dense array of 
mucocytes. The abfrontal surface of the 
contemporary autobranch gill is most probably a 
vestigial mucociliary epithelium (Dufour & 
Beninger in press), whose original protobranch 
cleaning function was lost with the reflection of the 
gill filaments to form the homorhabdic filibranch 
gill, separating the pallial cavity into infra- and 
suprabranchial chambers. Indeed, the assumption 
of the filibranch condition may have been the most 
important factor in the diversification and 
proliferation of the Bivalves from the early 
Ordovician (Cope 1996). This is, however, the most 
primitive contemporary autobranch gill type, 
present in only 7% of extant families. Given the 
large species numbers and extensive habitats of the 
eulamellibranch heterodonts, the proportion of 
homorhabdic filibranch species is probably even 
smaller [data from Newell (1965)]. Within the taxa 
presenting this gill type, the data suggest an 
evolutionary gradation of the abfrontal surface. 
Mytilus edulis presents the most abundantly ciliated 
abfrontal epithelium, followed by Modiolus 
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Fig. 1. Scaleless graph of relative abfrontal mucocyte and ciliary densities showing functional significance of 
positions within each of the quadrants. In the upper right quadrant, the original (protobranch) condition of high 
mucocyte and ciliary densities is situated, as well as eventual pre-adaptations of this condition for new functions. In 
the upper left quadrant, high mucocyte densities and low ciliary densities indicate the loss of the original cleaning 
function, with the assumption of a new function for this surface - possibly in reduction of drag and thus increase in 
efficiency of water flow. In the lower left quadrant, low mucocyte and ciliary densities indicate a loss of the original 
cleaning function, with no new surface function. Finally, in the lower right quadrant, low mucocyte densities and high 
ciliary densities indicate loss of the original cleaning function, and assumption of a new function accomplished by 
cilia alone (e.g. water pumping). 

modiolus, with Arca zebra presenting only very 
sparse cilia (Fig. 2). 

It is not known whether the more primitive 
Mytilus edulis homorhabdic filibranch gill has 
retained the original abfrontal cleaning function, 
but since this surface is normally exposed to 
moving, 1 ~m filtered seawater (M~hlenberg & 
Riisgfird 1978), any cleaning would be restricted to 
occasional removal of faeces or gametes not voided 
in the excurrent flow. Two more probable 
interpretations may be made: (1) the abfrontal cilia 
may be vestigial and largely non-functional in the 
primitive homorhabdic filibranch gill of Mytilus 
edulis [other vestigial mucociliary surfaces are 
known in this species, see Beninger et al. (1995)]; 
or (2) the dense abfrontal ciliation in M. edulis 
might assist in water pumping (Orton 1912; Jones 

et al. 1990, 1992; Jones & Richards 1993). It is 
currently impossible to visualize simple cilia in 
vivo, even using endoscopy (Beninger 2000), so 
this interesting hypothesis cannot be unequivocally 
confirmed. In this scenario, the abfrontal ciliation 
would be a pre-adaptation for more efficient water 
pumping, perhaps partly responsible for the 
numerical success of the Mytilidae. However, the 
abfrontal mucocytes would still be non-functional 
and vestigial. 

The sparse ciliation and the few small mucocytes 
in Modiolus modiolus render cleaning or pumping 
functions impossible, as do the near-bare abfrontal 
surface and rare mucocytes of Arca zebra (Fig. 2). 
These three species thus present increasing degrees 
of reduction of the abfrontal mucociliary surface of 
the homorhabdic filibranch gill, from Mytilus 
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Fig 2. Relative positions of the gill types examined with respect to abfrontal mucocyte and cilia density. Note new 
function assumed by the abfrontal surface of eu|amellibranch gills, loss of surface function in the advanced 
homorhabdic filibranchs Modiolus modiolus and Arca zebra. None of the representatives of the four principal gill 
types presents reduction of mucocytes with retention of cilia (lower right quadrant). 

edulis to Arca zebra, paralleling the reduction and 
disappearance of the original cleaning function. 

The great degree of reduction of the abfrontal 
cilia in the eulamellibranch gills studied clearly 
demonstrates the extension of the trend to reduction 
and loss of the primitive mucociliary function in the 
homorhabdic gill type (Fig. 2). However, the 
retention of a relatively high density of abfrontal 
mucocytes indicates that, in this gill type, there has 
either been neutral selection for this trait or that the 
mucocytes have been retained and redirected 
toward a new function by positive selection. The 
presence of only AMPS (i.e. viscous)-secreting 
mucocytes on the eulamellibranch abfrontal 
surface, and their extremely dense distribution in 
Spisula solidissima, argues strongly for the latter 
interpretation. The most probable new function of 
the mucocytes of the abfrontal surface in this gill 
type is the reduction of frictional resistance to water 
flow (Faillard & Schauer 1972; Hoyt 1975; Daniel 
1981) across the epithelia of the suprabranchial 

chamber, which is highly modified to form water 
tubes. This would increase the efficiency of water 
flow in these species and parallels the pronounced 
morphological modifications of the gills, allowing 
enhanced flow as well as a consequently smaller 
gill:pallial cavity volume ratio. 

The eulamellibranch gill is widely believed to be 
derived from the ancestral homorhabdic filibranch 
condition (Orton 1912; Yonge 1941; Morton 1979; 
Salvini-Plawen 1980; Allen 1985; Waller 1998). 
The modifications to the abfrontal surface 
described in the present study indicate that this gill 
type not only continues the trend to reduction or 
loss of the original cleaning function, but that this 
surface has assumed a new function commensurate 
with the increased efficiency of water flow in this 
gill type. 

In the two heterorhabdic gill types studied, the 
total absence of cilia on the abfrontal surface of the 
OF plicae clearly demonstrates the loss of the 
primitive mucociliary cleaning function in these 
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species. The presence of abundant ciliation and 
high densities of mucocytes on the PF may be 
related to the tardy evolutionary development of PF 
cf. OE It is likely that PF are formed from modified 
OF, and both phylogenetic and ontogenetic studies 
show that PF arise well after OF (Le Pennec et al. 
1988; Beninger et al. 1994). The developmental 
sequence of the PF may thus be quite different from 
that of the OF, with the notable retention of the 
primitive mucociliary characters. In Placopecten 
magellanicus, it has been suggested that the PF 
abfrontal mucocytes may provide the lubrication 
necessary for the retraction of the gill during rapid 
valve adduction, such as the swimming escape 
response common in juveniles or sudden valve 
closure in adults (Beninger et al. 1988). However, 
only about two-thirds of the abfrontal surface 
would actually be in contact with the apposing 
mantle surface under such conditions (the 
remaining third being the frontal surface of the 
ascending branch of the PF outer demibranch). The 
abfrontal secretions may also reduce friction 
between apposed lamellae following collapse of the 
ascending lamellae from the ciliary attachment to 
the mantle prior to retraction, assisting in the 
preservation of structural integrity during the clap 
response. In the Ostreidae, the relatively high 
degree of interlamellar and interfilamentar fusion 
has resulted in a suprabranchial cavity akin to the 
water canals in eulamellibranchs; the retention of 
AMPS mucocytes only on the PF may indicate that 
they play a similar role in the reduction of frictional 
resistance to water flow. In any event, the unique 
context of the evolutionary and developmental 
history of the heterorhabdic gill has resulted in a 
mixed condition (Fig. 2), with the phylogenetically 
older OF presenting a degree of reduction similar to 
the advanced homorhabdic filibranch or eulamelli- 
branch condition, whereas the phylogenetically 
recent PF have retained the original mucociliary 
characters of the abfrontal surface. 

It is noteworthy that no gill types appear in the 
lower right quadrant of Fig. 2. The abfrontal 
surface of a gill type in this region would present 
reduced mucocyte numbers and a high ciliary 
density; the fact that a high ciliary density is always 
accompanied by a moderate to high density of 
mucocytes  reinforces the conclusion that this 
surface was originally mucociliary. The only 
conceivable new function for the abfrontal surface 
in this quadrant would be the propulsion of water; 
none of the gills examined appears to have derived 
from lines which selectively reduced mucocytes 
while retaining cilia for such a function. 

While the present study proposes an evolutionary 
paradigm for the distribution of cilia and mucocytes 
on the abfrontal surface of bivalve gills, it clearly 
requires additional data from all gill types in order 

to evaluate the universality of this scheme. In 
particular, observations of the abfrontal surface of 
early developmental stages will be important in 
validating the evolutionary sequences proposed 
herein for the bivalve gill. 
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